Stay calm, we'll deal with the problem... training chatbots from customer service interactions

Benoit Favre

Laboratoire d'Informatique Fondamentale

February 24, 2017

B. Favre (LIF)

A D > A B > A B

What is a chatbot?

- Dialog system which can have an entertaining conversation
 - Chat-chat
 - Task oriented
- History
 - Eliza, virtual therapist
 - * http://www.masswerk.at/elizabot/
 - Mitsuku (best chatbot at Loebner price 2013/2016)
 - http://www.mitsuku.com/
 - The Microsoft Tay fiasco
 - * Humans will always try to defeat an IA
 - A new industry hype
 - ★ Facebook, google...
- Question: can we spare dialog model engineering?
 - Train a model directly from conversation traces

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

- Datcha project
 - http://datcha.lif.univ-mrs.fr
 - Study text chat NLP
 - Relationship between argumentation and semantics
 - Task-oriented evaluation
- Data-driven approach to conversation modeling
 - Given a conversation up to a point, can we predict what will happen next
 - No need for linguistic analysis, but no linguistic prior
- "Chatbot" if we predict the next utterance for one of the parties
 - Simulate an agent to solve simple customer problems
 - Simulate a customer to train agents
 - However, we cannot actionate anything as those events have not been logged
- If we can create a chatbot, we have understood something about conversations
 - May not be an objective of the project
 - But could impact the way we think about conversations

Related work

- Models
 - Generate next turn given previous turn with an encoder-decoder
 - ★ "A Neural Conversational Model" [Vynials et al. 2015]
 - Add turn-level representations
 - "Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models" [Serban et al., AAAI 2016]
 - Add attention mechanism to the hiearchical model
 - ★ "Attention with Intention for a Neural Network Conversation Model" [Yao et al., SLUNIPS-2015]
 - Chatbot as information retrieval
 - ★ "Improved Deep Learning Baselines for Ubuntu Corpus Dialogs" [Kadlec et al., SLUNIPS-2015]
- Dialog specifics
 - Introduce long term reward
 - ★ "Deep Reinforcement Learning for Dialogue Generation", [Li et al., ACL 2016]
 - How generate diverse responses?
 - "A Diversity-Promoting Objective Function for Neural Conversation Models" [Li et al., NAACL 2016]
 - Enforce consistency by explicitly modeling speakers
 - ★ "A Persona-Based Neural Conversation Model" [Li et al., ACL 2016]
- Evaluation: automatic metrics do not correlate with manual evaluation
 - ▶ "How NOT To Evaluate Your Dialogue System" [Liu et al, EMNLP 2016]

Proposed models

- Our approach
 - Knowledge-free and structure-free
 - Learn directly from data in an end-to-end manner
 - Deep learning to the rescue
- Two relatively naive models
 - Alternating language models
 - ★ Essentially a language model
 - 2 Turn retrieval
 - * Predict a complete turn at a time

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model 1: Alternating LM + LSTM

• A simplified version of the encoder-decoder (or seq2seq) framework

- Trained the same way as a regular word-based language model
- At prediction time, alternate between user input and generation
 - \star Training data needs to be in the same form
- Current implement: multi-layer LSTM

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

LM: Math • LSTM

$$i_t = \sigma(W_i x_t + U_i h_t + b_i) \tag{1}$$

$$f_t = \sigma(W_f x_t + U_f h_t + b_f)$$
(2)

$$o_t = \sigma(W_o x_t + U_o h_t + b_o)$$
(3)

$$o_t = \sigma(W_o x_t + U_o h_t + b_o)$$

$$c'_t = \tanh(W_c x_t + U_c h_t + b_c)$$

$$c_{t+1} = f_t \odot c_t + i_t \odot c'_t$$

$$h_{t+1} = o_t \odot \tanh(c_{t+1})$$
(6)

$$LSTM(x_t, h_t, c_t) = h_{t+1}$$
(7)

• Multilayer LSTM language model

$$h_0^{(i)} = c_0^{(i)} = 0 \quad \forall i \in [1; n]$$
(8)

$$x_t = embedding(w_t) \tag{9}$$

$$h_{t+1}^{(1)}, c_{t+1}^{(1)} = LSTM(x_t, h_t^{(1)}, c_t^{(1)})$$
(10)

$$h_{t+1}^{(i)}, c_{t+1}^{(i)} = LSTM(h_t^{(i-1)}, h_t^{(i)}, c_t^{(i)}) \quad \forall i \in]1; n]$$
(11)

$$LM(w_{t+1}) = softmax(W_d h_{t+1}^{(n)} + b_d)$$
(12)

(4)

Model 2: Bi-encoder GRU

- Create an information retrieval system
 - Which can retrieve the next turn given a history
 - Encode history with a first recurrent model
 - Encode next turn with a second recurrent model
 - Compute a similarity between those representations (dot product)
- Training objective: triplet ranking
 - Make sure the correct association has a higher score than a randomly selected pair
- Problem: the cost of retrieving a turn
 - Everything can be precomputed, just the dot product remains
 - Many approaches for finding approximate nearest neighbors in a high dimensional space (ie. locality preserving hashing)

Bi-encoder training

- Maximize margin between the result of $h_i \cdot r_i$ and $n_i \cdot r_i$
 - ► *h_i* is the history
 - n_i is a random history
 - \triangleright r_i is the response

$$Loss = \frac{1}{n} \sum_{i} \max(0, 1 - h_i \cdot r_i + n_i \cdot r_i))$$

Keras model

B. Favre (LIF)

February 24, 2017 9 / 14

イロト イポト イヨト イヨト

GRU Math

• GRU

$$z_t = \sigma(W_z x_t + U_z s_t + b_z) \tag{13}$$

$$r_t = \sigma(W_r x_t + U_r s_t + b_r) \tag{14}$$

$$h_t = \tanh(W_h x_t + U_h (r_t \odot s_t) + b_h) \tag{15}$$

$$s_{t+1} = (1-z_t) \odot h_t + z_t \odot s_t \tag{16}$$

$$GRU(s_t, x_t) = s_{t+1} \tag{17}$$

• Bi-encodeur

$$x_{h,t} = embedding(w_{h,t}) \quad \forall t \in [0,n]$$
 (18)

$$x_{r,t} = embedding(w_{r,t}) \quad \forall t \in [0,m]$$
(19)

$$h_i = GRU_h(...GRU_h(0, x_{h,0}), ...x_{h,n})$$
 (20)

$$_{i} = GRU_{r}(...GRU_{r}(0, x_{r,0}), ...x_{r,m})$$
 (21)

イロト イポト イヨト イヨト

$$BI_ENC(h_i, r_i) = softmax(h_i \cdot r_i)$$
 (22)

r

Evaluation setup

• Corpus: Orange ATH TV

Stat	Train	Valid	Test
Conversations	16,140	698	606
Turns	465,693	20,090	18,392
Words	7,744,262	327,979	299,340

- Preprocessing
 - Tokenization (based on penn tokenizer)
 - A few rules to strip additional URLs, phone numbers, etc.
 - Lower case
 - Concatenate turns of the same participant with <eol>
 - Separate conversations by <eoc>
 - Replace all TC[1-9] by a generic TC

Experiments

- Evaluation metrics
 - Perplexity (PPL): $-\frac{1}{n}\sum logP(turn|history)$
 - Better-than-random (BTR): $\frac{1}{n}|P(turn|history) > P(turn|noise)|$
- Results on the ATH TV test set (3 last files):

Method	PPL	BTR
Language model	17.52	69.39%
Information retrieval	11.85	93.91%

Parameters

- LM: vocab=30k, layers=2, hidden=650, sample=1024, maxlen=35, batch=20, optim=sgd, epochs=8
- Bi-encoder: vocab=30k, embeddings=128 (init=w2v), hidden=256, maxlen=64, repr=128, batch=256, optim=Nadam, epochs=100

イロト 不得下 イヨト イヨト

Analysis

• t-SNE Projections of turn representations

Prospects

- Better chatting
 - Look into attentive and memory-based models
 - ★ Track entities
 - Stronger LM, better sampling in retrieval method
 - * Introduction of reinforcement learning
 - Evaluation methodology
- Representations
 - Split conversation and use one side to predict the other
 - \star Look at trajectories in that space
 - Identify dialog acts / or dialogic structures in embeddings
- Applications to Datcha-relevant problems
 - Recurrent modeling for success prediction
 - Application to in-call agent tutoring